colorise
Release 1.0.0

Jan 09, 2020

Contents

10

11

12

13

Basic Usage
colorise.cprint ()
colorise. fprint ()
colorise.highlight ()
Attributes

Disabling Colors

More Colors!

Redefining Colors
Screenshots

FAQ

Changelog

1.1 1.0.0 ... e
11.2 0.1.4 (pre-release)
11.3 0.1.3 (pre-release)
114 0.1.2 (pre-release)
11.5 0.1.1 (pre-release)
11.6 0.1.0 (pre-release)

Tested Systems

121 Mac e
122 Windows e
123 LinuX o o e e e e e e e e e

Features

13.1 Indicesandtables

11

13

15

17

19

21

23

........................ 23
........................ 24
........................ 24
........................ 24
........................ 24
........................ 24

25

........................ 25
........................ 25
........................ 25

27

colorise, Release 1.0.0

LOLOELS

In addition to this tutorial, you can find examples in the examples folder.
Table of Contents:
1. Basic Usage
. colorise.cprint
. colorise. fprint

. colorise.highlight

. Disabling Colors

2
3
4
5. Attributes
6
7. More Colors!
8

. Redefining Colors

Contents 1

images/colorise-logo.png
https://pypi.python.org/pypi/colorise/
https://travis-ci.org/MisanthropicBit/colorise
https://colorise.readthedocs.io/en/latest/?badge=latest
https://img.shields.io/pypi/wheel/colorise
https://img.shields.io/github/license/MisanthropicBit/colorise.svg
https://pypi.python.org/pypi/colorise/
https://github.com/MisanthropicBit/colorise/tree/master/examples

colorise, Release 1.0.0

2 Contents

CHAPTER 1

Basic Usage

You may be interested to know how many colors your terminal can represent, which you can check using colorise.
num_colors () which tries its best to guess the number of colors supported.

>>> import colorise
>>> colorise.num_colors ()
256

Returned values may be 8, 16, 88, 256 and 16,777,216 (or 256”3 i.e. 24-bit true-color). You can also run the
color_test.py script which prints all the capabilities of your console. To set the current color, you can use the
colorise.set_color () function. For example,

would set the current foreground color to red while

would set the current foreground color to red and the background color to green. Supported color names can be queried
viacolorise.color_names ().

>>> colorise.color_names ()

['black', 'red', 'green', 'yellow', 'blue', 'purple', 'magenta', 'cyan', 'gray', 'grey
—"', 'lightgrey', 'lightgray', 'lightred', 'lightgreen', 'lightyellow', 'lightblue',
—'lightpurple’', 'lightcyan', 'white']

Use colorise.reset_color () toreset colors to their defaults.

https://github.com/MisanthropicBit/colorise/blob/master/color_test.py

colorise, Release 1.0.0

4 Chapter 1. Basic Usage

CHAPTER 2

colorise.cprint ()

To print colored text, you can use the colorise.cprint () function.

colorise, Release 1.0.0

6 Chapter 2. colorise.cprint ()

CHAPTER 3

colorise.fprint ()

The colorise.fprint () function provides more control than colorise.cprint () by letting you specify
colors akin to Python 3’s string formatting.

The colorise. fprint () function provides the autoreset keyword argument to control if colors should be reset
when a new color format is encountered. It is True by default.

Notice in the second example that both fore- and background colors are reset. It would correspond to the following
example where we explicitly reset all colors and attributes with { reset } before setting the foreground color to red.

https://docs.python.org/3.7/library/stdtypes.html#str.format

colorise, Release 1.0.0

8 Chapter 3. colorise.fprint ()

CHAPTER 4

colorise.highlight ()

The colorise.highlight () function can be used to highlight ranges of characters within a string.

colorise, Release 1.0.0

10 Chapter 4. colorise.highlight ()

CHAPTER B

Attributes

Text attributes are supported via the colorise.attributes.Attr class.

Asfor colorise. fprint (), you can specify the attributes directly in the format string.

11

colorise, Release 1.0.0

12 Chapter 5. Attributes

CHAPTER O

Disabling Colors

It is sometimes useful to disable colors, for example in an application where colored output is controlled by a config-
uration file. The colorise.cprint (), colorise.fprint () and colorise.highlight () functions all
support the enabled keyword argument for this purpose. Colors are enabled by default.

13

colorise, Release 1.0.0

14 Chapter 6. Disabling Colors

CHAPTER /

More Colors!

Besides named colors, you can also specify colors via color table index, RGB, hex, HLS and HSV. Color indices index
into color tables commonly supported by different platforms.

Note: Even if your terminal does not support 88/256 index color tables or true-color, colorise will attempt to approx-
imate the color by finding the closest one (via linear distance) and use that. For example, Windows usually supports
only 16 colors butusing colorise.cprint ('Hello', fg='rgb(240;240;0) ") onsuch asystem will still
give you a yellow color (assuming standard Windows console colors). Also see the mario sprites in the Screenshots
section.

15

https://en.wikipedia.org/wiki/HSL_and_HSV
screenshots.html

colorise, Release 1.0.0

16 Chapter 7. More Colors!

CHAPTER 8

Redefining Colors

Some platforms allow you to redefine the standard colors but currently you can only redefine colors on Windows. As
an example, let us redefine ‘green’ (color index 2).

colorise.redefine_colors () takesadictionary of colortable indices as keys and RGB tuples as values. Here,
we redefine the entry in the colortable at the color index for green (2) to be magenta instead. This change persists until
the color is redefined again or colorise is quit.

Note: Redefining colors does not currently work with ConEmu or on Mac and Linux systems.

17

https://conemu.github.io/

colorise, Release 1.0.0

18 Chapter 8. Redefining Colors

CHAPTER 9

Screenshots

Using colorise.cprint on Ubuntu

»>> colorise.cprint("Error: Expected a string, found int", fg='red', bg="green')
e

Using colorise.highlight on Windows

>2> colorise. highlight{("Highlight this text!". fg="blue’. indices=I[4, 17, 3. 5. 181>

ght his te t?

From left to right: True-color, 256 color and 16 color

» python examples/mario.py

19

colorise, Release 1.0.0

» python examples/mario.py

» python examples/mario.py

20 Chapter 9. Screenshots

cHAaPTER 10

FAQ

Q: Why do I get different results on different platforms?

Different platforms and terminals have support for different numbers of colors, attributes and colortables, and colorise
tries it best to provide uniform results although platform differences makes this hard to do is 100%.

For example, depending on your console/terminal color support, you may have anything from 8-, 16-, 88-, 256-color
support or even full-blown 24-bit colors available. If you request a 24-bit color but only have 256 colors, colorise will
try its best to approximate the requested color according to the colortable of 256 colors available.

Q: I have custom colors set up in Windows, why are they not reflected in colorise?

You can set up custom console colors in Windows but in order to detect them you need at least [Windows Vista or
Windows Server 2008](https://docs.microsoft.com/en-us/windows/console/getconsolescreenbufferinfoex). If you are
working on a Windows version before that, your custom colors will not be properly reflected.

Q: How come I can use more than 16 colors in Windows?

Some versions of Windows 10 have 24-bit color support and can interpret ANSI escape codes, the latter which is
commonly how colors are emitted on Mac and Linux systems.

Q: Why are the named colors on Windows incorrect?

On Windows, named colors are actually indices into a color table and not actual colors. Typing

>>> colorise.cprint ('This should be yellow', fg='yellow')

will give you the color in the table correspoding to the ‘yellow’ index, not necessarily the color yellow. You can see
the current colors by right-clicking the top bar of the console and selecting ‘Properties’ then selecting the ‘Colors’ tab.
You can also set these programatically using colorise.redefine_colors ().

Q: The blink and italic attributes do not appear to work in iTerm.app?

This has to be enabled manually in the settings in iTerm.app. Go into Preferences — Profiles — Text and check the
boxes for “Blinking text” and “Italic text”.

Q: Can I use colorise in different threads?

colorise is not thread-safe.

21

https://docs.microsoft.com/en-us/windows/console/getconsolescreenbufferinfoex
https://devblogs.microsoft.com/commandline/24-bit-color-in-the-windows-console/
https://en.wikipedia.org/wiki/ANSI_escape_code
https://iterm2.com/

colorise, Release 1.0.0

On nix systems, colorise emits ANSI escape codes to print colored output. Internally, this happens in a way where
multiple threads would interfere although it should be possible to perform this in a thread-safe manner.

On Windows systems that do not support ANSI escape codes, multiple threads would also interfere with each other. On
Windows systems that do support ANSI escape codes, it should still be possible to output colored text in a thread-safe
manner.

Q: Why do the tests fail with ‘The handle is invalid.” on Windows?

tox and pytest capture stdout and stderr which does not play well with Windows handle creation hence the error. You
can tell pytest not to capture stdout and stderr and the tests should run but also show the output of all tests.

’$ pytest -s tests

or

’$ pytest —--capture=no tests

Q: Was the colorise logo generated using colorise?

Yes :)

22 Chapter 10. FAQ

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/contents.html
https://docs.pytest.org/en/latest/capture.html
https://docs.pytest.org/en/latest/contents.html

cHAPTER 11

Changelog

Version numbers follow Semantic Versioning (i.e. <major>.<minor>.<patch>).

11.1 1.0.0

2019-12-17

Warning: Major update with breaking changes.

* [new] Support for 88/256 colortable indices, and RGB, HSV/HLS and hexadecimal color formats.
* [new] Support for virtual terminal processing on Windows.

* [new] Changed parser to use Python 3’s str.format syntax, e.g. <fg=red> becomes { fg=red}. Removed
ColorManager classes since no state needs to be stored, replaced by a ColorFormatter class.

* [new] Better detection of terminal color capabilities.

* [new] If an unsupported color format is specified which the terminal does not support it (e.g. an RGB color in
a 16 color terminal), colorise will automatically find color on your system that matches the desired color (via
linear distance).

* [new] More thorough testing.

¢ [refactor] Reworked entire library.

e [refactor] Removed formatcolor and formatbyindex functions.
¢ [docs] Online documentation and updated comments.

* Changed license from MIT to BSD 3-clause.

23

https://semver.org/
https://en.wikipedia.org/wiki/HSL_and_HSV

colorise, Release 1.0.0

11.2 0.1.4 (pre-release)
2014-06-11
¢ [Fix] Fixed a bug on nix platforms that caused background colors to break.
11.3 0.1.3 (pre-release)
2014-06-02
* [Fix] Fixed a bug where passing a string without any color formatting would print the empty string.
11.4 0.1.2 (pre-release)
2014-05-31
* [Fix] Fixed abug in nix/ColorManager .py which caused set_color to malfunction.
11.5 0.1.1 (pre-release)

2014-05-24

* [Fix] Fixed a bug where putting a : or escaped > or < just before or after some color formatted text would raise
aColorSyntaxError.

11.6 0.1.0 (pre-release)

2014-05-14

e Initial version.

24 Chapter 11. Changelog

cHAPTER 12

Tested Systems

This is a maintained list of systems that colorise has been tested on.

Something not working as expected with your terminal? Please report an issue or submit a pull request using the
contribution guidelines.

12.1 Mac

Terminal (O] Python version
iTerm 3.2.9 macOS Catalina v10.15.1 | Python 3.7.4
Terminal.app 2.9.4 (421.1.1) | macOS Catalina v10.15.1 | Python 3.7.4

12.2 Windows

Terminal 0S Python version
Default Windows console | Windows 8.1 Pro, version 6.3, build 9600 | Python 3.7.3
ConEmu Windows 8.1 Pro, version 6.3, build 9600 | Python 3.7.3

12.3 Linux

None yet.
colorise is a Python module for printing colored text in terminals.

You can install it via pip.

$ pip install colorise

25

https://github.com/MisanthropicBit/colorise/issues
https://github.com/MisanthropicBit/colorise/pulls
https://github.com/MisanthropicBit/colorise/blob/master/CONTRIBUTING.md
https://iterm2.com/
https://conemu.github.io/
https://pip.pypa.io/en/latest/

colorise, Release 1.0.0

26 Chapter 12. Tested Systems

cHAPTER 13

Features

* Supports 8, 16, 88, 256 colors and true-color.
 Colors can be specified by name, index, hexadecimal, HLS, HSV or RGB formats.
* Custom color format akin to Python 3.0 string formatting.

» Automatically find the closest color based on the terminal’s capabilities.

>>> import colorise
>>> colorise.set_color(fg="red")

>>> colorise.cprint('This is blue with a yellow background', fg="blue', bg="yellow')

>>> colorise.highlight('Highlighted', fg="red', indices=[0, 3, 5, 10])
ighlighte

>>> from colorise import Attr

>>> colorise.cprint('Hello"', fg="yellow', bg="purple', attributes=[Attr.Italic])

Hello

>>> colorise.fprint('{underline,fg=yellow,bg=purple}Hello’)

Hello

>>> colorise.cprint('Hello', bg="rgb(100;95;194)")

Hello

>>> colorise.fprint('{fg=#77acde}Hello")

Hello

13.1 Indices and tables

* genindex

27

https://en.wikipedia.org/wiki/HSL_and_HSV
https://docs.python.org/3.7/library/stdtypes.html#str.format

colorise, Release 1.0.0

¢ modindex

e search

28 Chapter 13. Features

	Basic Usage
	colorise.cprint()
	colorise.fprint()
	colorise.highlight()
	Attributes
	Disabling Colors
	More Colors!
	Redefining Colors
	Screenshots
	FAQ
	Changelog
	1.0.0
	0.1.4 (pre-release)
	0.1.3 (pre-release)
	0.1.2 (pre-release)
	0.1.1 (pre-release)
	0.1.0 (pre-release)

	Tested Systems
	Mac
	Windows
	Linux

	Features
	Indices and tables

